Balloon Experiments with Amateur Radio Flight 11 Post-Flight review

Payload lead: Wai Phyo 9V1WP Resident-Rigging Expert: Fu Hang 9V1FH Payload specialists and ground support: Liwei 9V1LW, Choong 9V1CV Regulations, clearance: Chew 9V1YP

Altitude(meters)

Loss of signal after Payload reached 7966m due to excessive battery drain, causing battery to rapidly deplete

Time stamp

BEAR-11 Baro readings

MS5611 sensor readings

MS5611, rated to 30km altitude at low precision performed nominally until battery ran out

Flight Stack

Flight Program: Launch->Payload cut from balloon at 30km->land Sensor group:

- MS561101BA03-5
 o i2c
- ASM330LHHTR &
 i2c
- MAX-M10s
 i2c
- MCP9600
 - i2c

Control

- 1x GPIO for nichro wire cutter(10 ohm
- 1x GPIO for contro battery Heater

50	4 layer PCB w/coplanar Waveguide impedence matched trace for GNSS antenna
	RF module: SX1268 based E22-M40030S 1W transmitter module Tx freq: 432.600MHz
ome n,0.5A) olling	Power electronics: TPS63070 Buck Boost Converter(Battery->5V0) AMS1117-3.3(5V0->3V3)
	ESP32-s2-mini-2 MCU

GNSS filtering

BFCN -1575+ Bandpass filter routed on CPW designed using KiCad CPW calculator and JLC stack up specifications.

Via stitches used to produce low impedance return path to ground(improves EMI performance and decreases noise)

JLC04161H-3313(成品板厚1.56mm±10%)

JLC04161H-3313A(特殊/成品板厚1.58mm±10%)

Impedance (Ω)	Type Signal Layer Top R		Top Ref	Bottom Ref		Trace Width	Trace Spacing	Impedance trace to copper	
50	Coplanar Single Ended	L1	1		L2	0.3421 /		0.5000	
Layer	Material			Thickn	ess (mil)	т	Thickness (mm)		
L1	Outer Copper Weight1oz					0.	0.0350		
Prepreg	7628, RC 49%, 8.6 mil					0.	0.2104		
L2	Inner Copper Weight					0.	.0152		
Core	1.1mm H/HOZ with copper			41.93 1.0650					
L3	Inner Copper Weight			0.60 0.0152			.0152		
Prepreg	7628, RC 49%, 8.6 mil			8.28 0.2104					
L4	Outer Copper Weight1oz					0.	.0350		

Transmission Line Type	Substrate Para	meters		Phy	sical Parameters		
O Microstrip Line	٤ <mark>٢:</mark>	4.56		W:	0.39	mm ~	0
🔿 Coplanar wave guide	tan δ <mark>:</mark>	2e-2		S:	0.5	mm ~	
Coplanar wave guide w/ ground plane Rectangular Waveguide	ρ:	1.72e-8		L: [3.175	mm ~	
 Coaxial Line Coupled Microstrip Line 	H: T:	0.2104	 mm ×	Ar	nalyze	Synthesize	T
 ○ Stripline ○ Twisted Pair 	μ(conductor):			Z0:	50.8114	Ω	~
S W S				Ang.	l: 10.8487	deg	· ~
	Component P Frequency: 1	arameters 575	MHz ~	Res Effe Cor Die Skir	ults ective ar: 3.26 nductor losses: 0.00 ectric losses: 0.014 n depth: 1.66	393 369716 dB 46118 dB 32 µm	

ayer	Top Ref	Bottom Ref	Trace Spacing (mm)	Impedance trace to copper (mm)		
~		L2 ~	1	0.50		

JLC04161H-7628(通用/成品板厚1.59mm±10%)

JLC04161H-7628B(特殊/成品

Via fencing spacing calculations

Project | Journey SBC | Hackaday.io

Wavelength of /20 for board /8 for edges

Antenna Design and RF Layout Guidelines (infineon.com)

$$S(via) = \lambda/20 = c/(20f\sqrt{})$$

Why an additional BPF?

It's mainly to test out GNSS lock functionality when there are heavy harmonics near a 1W transmitter, worked nominally, good GNSS lock during nominal flight.

Useful for future flights where i plan to have a 1.5W Analog Video Transmitter

Electrical Specifications^{1,2} at 25°C

Parar	neter	F#	Frequency (MHz)	Min.	Тур.	Max.	Unit
	Center Frequency			-	1575	-	MHz
Pass Band	Insertion Loss	F1-F2	1530-1620			3.0	dB
	VSWR	F1-F2	1530-1620			2.5	:1
Chan Dand Lawren	Insertion Loss	DC-F3	DC-1200		20		dB
Stop Band, Lower	VSWR	DC-F3	DC-1200	—	25	-	:1
Stop Band, Upper	Insertion Loss	F4-F5	2800-5200		25	_	dB
	VSWR	F4-F5	2800-5200		20	$\sim - 1$:1

 Measured on Mini-Circuits Characterization Test Board TB-270. This filter is not intended for use as a DC Blocking circuit element. In Application where DC voltage is present at either input or output ports, blocking capacitors are required at the corresponding RF port.

Typical Frequency Response

Power electronics

in the SX1268 and on the Ebyte module)

Voltage sense done by a voltage divider

(inductor!)

- Used Ti Power Designer tool to get a layout with inputs Vin and Vout, ripple voltage was also a concern for the transmitter.(There are internal LDO and DC-DC converter
- Liberal use of ground pours and vias to have low impedance return path for currents, decrease voltage drops, ensure low voltage ripple and improve EMI

Jlc soldered

Diy soldered

Lessons learnt from SMD soldering

Do not use footprints imported from the IC libraries especially for LGA/QFN ICs.

Extend the solder pads out so that there is an indication of a good solder point(unless you have an x ray)

No indication->I2c device not detected)

Solder pad extension ->good indication

Hot plate soldering

Finished product....or is it?

Open heart surgery: nothing a pint of Flux, heat gun, solder wick and a can do spirit can't solve

Solder did not reach some pins after hot plate soldering

Open heart surgery: nothing a pint of Flux, heat gun, solder wick and a can do spirit can't solve

Telemetry

80 Baud RTTY was used, where 2 frequencies with a shift of 170Hz are switched, to represent binary coding at 80 times a second(10 bytes/Second)

\$CALLSIGN,frame_counter,HH:MM:SS,latitude,longitude,altitude,other,fields,here*CRC16\n

\$\$<callsign>,<count>,<UTC>,<lat>,<lon>,<alt>[,<optional field1>...]*CRC<LF>

\$\$9V1WP,6,22:41:11,1.2974,103.7617,43.8630,1.79,161.84,6.24,47.6,42.5,1011,012345789ABR,0*FC09

g						- 0
					Spot	RxID TxID
	Payload		Multi mode			
owse all		\$	\$	Auto-config	ure	Auto-mode-s
ude	Longitude	Altitude	Checksum GOOD :-)	Bearing D	istance	Elevation La:
P,78,12:17:	39, 1. 3459, 103, 7078, 0.	0046,0.12,350.05,	6.17,32.50,31.75,10	006,012345789ABR	R*1E6E	
<^mz:oZo ,295.56,6. /o{+su;~g 2,350.05,6	S};M?*9Ou{n3no]_p .16,32.51,31.75,104 7vln;w:>S_te1Y;O;n .17,32.50,31.75,100	U(o)s_{{}{oU_o} 6,012345789ABF o?g8L7Og.?/\v1F 6,012345789AB	07wv[qn~~g{G{w R*EF33 R^zneOT3&&6FVv R*1E6E	s~vwowvusn?u~ Sv kk~{ooO]~]	-&VVVf&]{G}g[>v	VVfff6&VvvVff&6F wOOYq?mWtcam;
2,350.05,6	1500	2000	2500	3	000	3500
			- je j			

Store | Lk

T/R

SQL

◀◀ ◀ 530 ► ➡ QSY

WARNING! Caught runtime_error: EZ::cURLError: curl_easy_perform: Couldn't connt

Using these 1W transmitter modules(E22 M40030S)

THE TX EN PIN IS TO BE TRIGGERED BY A 3.3V LOGIC HIGH SIGNAL FOR THE 1W PA TO WORK!!!

I made a mistake and did not set the TX EN pin high in the module, which resulted in abysmal range in our range tests where we go behind 4-6 walls for the test propagation instead of doing an actual end to end test.

RTTY, Not so optimal

Pros:

- Very bandwidth efficient, 170 hz frequency shift, a BW of 750 Hz is enough.
- Simple code, you are encoding a string in ASCII that is then turned into Bits.

Cons:

- Very slow bit rate, long transmissions can mean Very high power usage
- Manual data sorting after flight.
- If using Hab hub for uploads to sondehub, even a slight error In the data string can fail the CRC16 CCITT check (best to DIY a dashboard)

Will switch back to 1k2 baud AFSK or even custom 9k6 baud GMSK for future flights. The goal is to get high rate telemetry of 1Hz-10Hz optimally.

Antenna construction(Hot Glue Spam)

Remember to burn off the enamel on copper wire to ensure an electrical connection and ease of soldering 31 32 30

talkies

Significantly lighter than a SMA ended monopole commonly found on walkie

The battery choice that doomed the flight

Typically, radiosondes use energizer AAs for powering the 100mW Si4xxx transmitter. Can be received within the range of 20-30 km.

Decided to use Energizer Lithium AAs for this flight.

Battery temp sensor is a one wire DS18B20 Onewire sensor(it only requires 3 wires, SIG,GND and VCC)

Battery heating done by a flexible 1W heating pad bought off aliexpress

Integrated battery pack

1.1W transmitter Drained the battery too fast, due to high discharge, bat temp is high due to the drain and internal resistance, rapidly draining the battery.(Bat_Temp) 2. Acted as a secondary heater until battery was drained.

12c woes

The MCP9600 is an I2c thermocouple Sense IC with cold junction compensation. This is to read the accurate external temperatures that goes down to as low as -80 degrees C at 20-25 km altitude

I ran through an I2c device checker that pings all i2c sensors and at above a i2c speed of 10kHz, the MCP9600 did not work.

I2c speed could have affected sensor read rates which could have been a significant problem if this was an actual flight controller.

I'd caution future users to have a separate I2c bus for this sensor.

Nichrome wire payload cutter

I decided to use JST-SM connectors for external connections. Connector has a securing latch that can be weight bearing for whole ~220g flight box.

The magic knot

Recovery system developed by the BEAR team to address reliable parachute deployment while keeping to 2m dimension limits due to regulations.

Local meteo office packs the parachutes inside the balloon, which be unreliable where the parachute lines get tangled, increasing decent rate.

Nichrome burns off load bearing line that undos a knot to release the parachute and payload.

Weather Balloon launching into weather

Mostly mid to low level cumulus cloud cover, payload loss of signal will be attributed to battery voltage dropping.

+Payload box was good enough to keep moisture out

The death tone

Once the battery runs out of voltage, the ESP32 is driven into a boot loop state.

Somehow a very narrow band tone is still being sent through the power amplifier of the RF module. Which consumes power and continues to do so, leading do a death cycle, death cycle continued until end of flight, T+1hr after launch before LOS.

A software fix can be implemented for all future flights where Tx lockout can be initiated to stop transmitting to ensure there is enough power for at least a GNSS lock and battery voltage recovery.

death tone was RX'ed until end of flight, T+2.5hr after launch before LOS.

Flight was modelled to last 2hr30 mins at a cut altitude of 30km

Two possibilities:

- Balloon Burst at 30km
- MCU and GNSS was still working, to initiate cut at a set altitude of 30km

Learning points from this flight and to dos

1.Change to 18650, 21700 or lipo batteries for transmitters beyond 100mW.

2. Solar powered with battery power management and charging circuits akin to satellite electrical power systems w/current sense.

2.Look into more elegant ways to stack pcbs such as Samtec connectors and design PCB such that there is clearance for screws and standoffs.

3.Look into 9k6 GMSK or even BPSK/QPSK next.

4.Software mitigations to avoid the death tone.

5. Have a dedicated sensor fusion board with a MCU next flight. IMU shall be SPI for high read rates. If the MCP9600 is to be used again, it must have it's own i2c bus.

y-m-d UTC MHZ rxCall rxGrid txCall txGrid OK03fu 14.097211 2025-01-26 05:52 HS0ZQS 0J11rg 9V1WP 0.01

BEAR-12

Flew to 4-5km altitude based on power level measurements.

KAMPUNG SUNGAI KUALI

26 Jan 2025 09:35:41 71 W Coast Hwy, Singapore 126844

Rx from Australia!